0%

RSA加密解密 初版

RSA加密解密 初版

初版

源码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
'''
扩展欧几里的算法
计算 ax + by = 1中的x与y的整数解(a与b互质)
'''
def ext_gcd(a, b):
if b == 0:
x1 = 1
y1 = 0
x = x1
y = y1
r = a
return r, x, y
else:
r, x1, y1 = ext_gcd(b, a % b)
x = y1
y = x1 - a // b * y1
return r, x, y

'''
超大整数超大次幂然后对超大的整数取模
(base ^ exponent) mod n
'''
def exp_mode(base, exponent, n):
bin_array = bin(exponent)[2:][::-1]
r = len(bin_array)
base_array = []

pre_base = base
base_array.append(pre_base)

for _ in range(r - 1):
next_base = (pre_base * pre_base) % n
base_array.append(next_base)
pre_base = next_base

a_w_b = __multi(base_array, bin_array, n)
return a_w_b % n
def __multi(array, bin_array, n):
result = 1
for index in range(len(array)):
a = array[index]
if not int(bin_array[index]):
continue
result *= a
result = result % n # 加快连乘的速度
return result

# 计算公钥和私钥的函数
def gen_key(p, q):
n = p * q
fy = (p - 1) * (q - 1) # 计算与n互质的整数个数 欧拉函数
e = 65537 # 选取e 一般选取65537
# generate d
a = e
b = fy
r, x, y = ext_gcd(a, b)
# 计算出的x不能是负数,如果是负数,说明p、q、e选取失败,不过可以把x加上fy,使x为正数,才能计算。
if x < 0:
x = x + fy
d = x
# 返回: 公钥 私钥
return (n, e), (n, d)

# 加密函数 m是被加密的信息 加密成为c
def encrypt(m, pubkey):
n = pubkey[0]
e = pubkey[1]

c = exp_mode(m, e, n)
return c
# 解密函数 c是密文,解密为明文m
def decrypt(c, selfkey):
n = selfkey[0]
d = selfkey[1]

m = exp_mode(c, d, n)
return m

# 主程序
if __name__ == "__main__":
'''公钥私钥中用到的两个大质数p,q,都是1024位'''
p = 106697219132480173106064317148705638676529121742557567770857687729397446898790451577487723991083173010242416863238099716044775658681981821407922722052778958942891831033512463262741053961681512908218003840408526915629689432111480588966800949428079015682624591636010678691927285321708935076221951173426894836169
q = 144819424465842307806353672547344125290716753535239658417883828941232509622838692761917211806963011168822281666033695157426515864265527046213326145174398018859056439431422867957079149967592078894410082695714160599647180947207504108618794637872261572262805565517756922288320779308895819726074229154002310375209
'''生成公钥私钥'''
pubkey, selfkey = gen_key(p, q)
'''需要被加密的信息转化成数字,长度小于秘钥n的长度,如果信息长度大于n的长度,那么分段进行加密,分段解密即可。'''
m = 1356205320457610288745198967657644166379972189839804389074591563666634066646564410685955217825048626066190866536592405966964024022236587593447122392540038493893121248948780525117822889230574978651418075403357439692743398250207060920929117606033490559159560987768768324823011579283223392964454439904542675637683985296529882973798752471233683249209762843835985174607047556306705224118165162905676610067022517682197138138621344578050034245933990790845007906416093198845798901781830868021761765904777531676765131379495584915533823288125255520904108500256867069512326595285549579378834222350197662163243932424184772115345
print("待加密信息-->",m)
'''信息加密,m被加密的信息,c是加密后的信息'''
c = encrypt(m, pubkey)
print("被加密后的密文-->",c)
'''信息解密'''
d = decrypt(c, selfkey)
print("被解密后的明文-->",d)